
ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ХИМИИ МУНИЦИПАЛЬНЫЙ ЭТАП 2018-2019 УЧЕБНЫЙ ГОД 7-8 КЛАСС

РЕШЕНИЯ

Задача 1

Задача 2

AE – HCl, хлороводород

 $A_2 - H_{2}$, водород

 \mathcal{B}_2 — Cl_2 , хлор

NaБ – NaCl, хлорид натрия

NaA – NaH

Задача 3

Рассчитаем массовые доли металлов в представленных соединениях:

1) Ag_3AuS_2

$$\omega(\mathrm{Ag}) = \frac{3*Ar(Ag)}{Mr(Ag_3AuS_2)} = \frac{3*107.87}{584.69} = 0,553*100\% = 55,3\%$$

$$\omega(\text{Au}) = \frac{Ar(Au)}{Mr(Ag_3AuS_2)} = \frac{196.97}{584.69} = 0,336*100\% = 33,6\%$$

2) BeAl₂O₄

$$\omega(\text{Al}) = \frac{2 * Ar(Al)}{Mr(BeAl_2O_4)} = \frac{2 * 26.98}{126.97} = 0,424 * 100\% = 42,4\%$$

$$\omega(\text{Be}) = \frac{Ar(Be)}{Mr(BeAl_2O_4)} = \frac{9.01}{126,97} = 0.071*100\% = 7,1\%$$

3) CoFe₂O₄

$$\omega$$
(Co)= $\frac{Ar(Co)}{Mr(CoFe_2O_4)} = \frac{58.93}{234.62} = 0,251*100\% = 25,1\%$

$$\omega(\text{Fe}) = \frac{2 * Ar(Fe)}{Mr(CoFe_2O_4)} = \frac{2 * 55,84}{234,62} = 0,476 * 100\% = 47,6\%$$

4) CuCo₂S₄

$$\omega(\text{Cu}) = \frac{Ar(Cu)}{Mr(CuCo_2S_4)} = \frac{64,55}{309,68} = 0,208*100\% = 20,8\%$$

$$\omega$$
(Co)= $\frac{2*Ar(Co)}{Mr(CuCo_2S_4)} = \frac{2*58,93}{309,68} = 0,381*100\% = 38,1\%$

Задача 4

- 1) Баллон с гексафторидом серы (SF₆) содержит наибольшее количество атомов. Рассчитаем количество молекул газов в баллоне объемом 20 л: $N = \frac{N_A \cdot V}{V_m} = \frac{6,022 \times 10^{23} \times 20}{22,4} = 4,98 \times 10^{23} \ \textit{молекул} \ .$ Количество молекул газов во
- 2) Рассчитаем количество атомов химических элементов.

Ar

Количество атомов Ar (аргона) равно числу молекул, поскольку молекула аргона одноатомна.

SF₆

В гексафториде серы в 7 раз больше атомов, чем молекул: $4.98*10^{23}*7=3.5\cdot10^{24}$

N_2O

В оксиде азота (1) в 3 раза больше атомов, чем молекул: $4.98*10^{23}*3=1.5\cdot10^{24}$

3) Рассчитаем плотности представленных газов

Ar:
$$\rho = \frac{M}{V_m} = \frac{39.95}{22.4} = 1.784$$
 $\kappa z / M^3$

всех баллонах одинаково.

SF₆:
$$\rho = \frac{M}{V_m} = \frac{146.05}{22.4} = 6,52 \quad \kappa z / M^3$$

N₂O:
$$\rho = \frac{M}{V_m} = \frac{44.03}{22.4} = 1,97$$
 $\kappa \epsilon / M^3$

4) Наиболее известные оксиды азоты: N_2O , NO, N_2O_3 , NO_2 , N_2O_5

Задача 5

По горизонтали:

1 - атом; 4 - водород; 6- сплав; 7- железо; 9-рутений; 10- нефть; 11- медь; 13- Ломоносов; 15- литий.

По вертикали:

2- Менделеев; 3 - кобальт; 5 - осмий; 8- молекула; 12-коррозия; 14 - золото.